3.132 \(\int \cos ^2(c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx\)

Optimal. Leaf size=119 \[ \frac{a^2 (5 A+4 B) \sin (c+d x)}{4 d \sqrt{a \sec (c+d x)+a}}+\frac{a^{3/2} (7 A+12 B) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{4 d}+\frac{a A \sin (c+d x) \cos (c+d x) \sqrt{a \sec (c+d x)+a}}{2 d} \]

[Out]

(a^(3/2)*(7*A + 12*B)*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(4*d) + (a^2*(5*A + 4*B)*Sin[c
+ d*x])/(4*d*Sqrt[a + a*Sec[c + d*x]]) + (a*A*Cos[c + d*x]*Sqrt[a + a*Sec[c + d*x]]*Sin[c + d*x])/(2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.272987, antiderivative size = 119, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.121, Rules used = {4017, 4015, 3774, 203} \[ \frac{a^2 (5 A+4 B) \sin (c+d x)}{4 d \sqrt{a \sec (c+d x)+a}}+\frac{a^{3/2} (7 A+12 B) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{4 d}+\frac{a A \sin (c+d x) \cos (c+d x) \sqrt{a \sec (c+d x)+a}}{2 d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^2*(a + a*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x]),x]

[Out]

(a^(3/2)*(7*A + 12*B)*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(4*d) + (a^2*(5*A + 4*B)*Sin[c
+ d*x])/(4*d*Sqrt[a + a*Sec[c + d*x]]) + (a*A*Cos[c + d*x]*Sqrt[a + a*Sec[c + d*x]]*Sin[c + d*x])/(2*d)

Rule 4017

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(a*A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^n)/(f*n), x]
- Dist[b/(a*d*n), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*(m - n - 1) - b*B*n - (a*
B*n + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2
 - b^2, 0] && GtQ[m, 1/2] && LtQ[n, -1]

Rule 4015

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(
B_.) + (A_)), x_Symbol] :> Simp[(A*b^2*Cot[e + f*x]*(d*Csc[e + f*x])^n)/(a*f*n*Sqrt[a + b*Csc[e + f*x]]), x] +
 Dist[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n), Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; Fr
eeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] &&
LtQ[n, 0]

Rule 3774

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*b)/d, Subst[Int[1/(a + x^2), x], x, (b*C
ot[c + d*x])/Sqrt[a + b*Csc[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \cos ^2(c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx &=\frac{a A \cos (c+d x) \sqrt{a+a \sec (c+d x)} \sin (c+d x)}{2 d}+\frac{1}{2} \int \cos (c+d x) \sqrt{a+a \sec (c+d x)} \left (\frac{1}{2} a (5 A+4 B)+\frac{1}{2} a (A+4 B) \sec (c+d x)\right ) \, dx\\ &=\frac{a^2 (5 A+4 B) \sin (c+d x)}{4 d \sqrt{a+a \sec (c+d x)}}+\frac{a A \cos (c+d x) \sqrt{a+a \sec (c+d x)} \sin (c+d x)}{2 d}+\frac{1}{8} (a (7 A+12 B)) \int \sqrt{a+a \sec (c+d x)} \, dx\\ &=\frac{a^2 (5 A+4 B) \sin (c+d x)}{4 d \sqrt{a+a \sec (c+d x)}}+\frac{a A \cos (c+d x) \sqrt{a+a \sec (c+d x)} \sin (c+d x)}{2 d}-\frac{\left (a^2 (7 A+12 B)\right ) \operatorname{Subst}\left (\int \frac{1}{a+x^2} \, dx,x,-\frac{a \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{4 d}\\ &=\frac{a^{3/2} (7 A+12 B) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{4 d}+\frac{a^2 (5 A+4 B) \sin (c+d x)}{4 d \sqrt{a+a \sec (c+d x)}}+\frac{a A \cos (c+d x) \sqrt{a+a \sec (c+d x)} \sin (c+d x)}{2 d}\\ \end{align*}

Mathematica [A]  time = 0.597141, size = 111, normalized size = 0.93 \[ \frac{a \sqrt{\cos (c+d x)} \sec \left (\frac{1}{2} (c+d x)\right ) \sqrt{a (\sec (c+d x)+1)} \left (\sqrt{2} (7 A+12 B) \sin ^{-1}\left (\sqrt{2} \sin \left (\frac{1}{2} (c+d x)\right )\right )+2 \sin \left (\frac{1}{2} (c+d x)\right ) \sqrt{\cos (c+d x)} (2 A \cos (c+d x)+7 A+4 B)\right )}{8 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^2*(a + a*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x]),x]

[Out]

(a*Sqrt[Cos[c + d*x]]*Sec[(c + d*x)/2]*Sqrt[a*(1 + Sec[c + d*x])]*(Sqrt[2]*(7*A + 12*B)*ArcSin[Sqrt[2]*Sin[(c
+ d*x)/2]] + 2*Sqrt[Cos[c + d*x]]*(7*A + 4*B + 2*A*Cos[c + d*x])*Sin[(c + d*x)/2]))/(8*d)

________________________________________________________________________________________

Maple [B]  time = 0.296, size = 399, normalized size = 3.4 \begin{align*}{\frac{a}{16\,d\cos \left ( dx+c \right ) \sin \left ( dx+c \right ) } \left ( 7\,A\sin \left ( dx+c \right ) \cos \left ( dx+c \right ) \left ( -2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}} \right ) ^{3/2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{2}\sin \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}} \right ) \sqrt{2}+12\,B\sin \left ( dx+c \right ) \cos \left ( dx+c \right ) \left ( -2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}} \right ) ^{3/2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{2}\sin \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}} \right ) \sqrt{2}+7\,A \left ( -2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}} \right ) ^{3/2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{2}\sin \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}} \right ) \sqrt{2}\sin \left ( dx+c \right ) +12\,B \left ( -2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}} \right ) ^{3/2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{2}\sin \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}} \right ) \sqrt{2}\sin \left ( dx+c \right ) -8\,A \left ( \cos \left ( dx+c \right ) \right ) ^{4}-20\,A \left ( \cos \left ( dx+c \right ) \right ) ^{3}-16\,B \left ( \cos \left ( dx+c \right ) \right ) ^{3}+28\,A \left ( \cos \left ( dx+c \right ) \right ) ^{2}+16\,B \left ( \cos \left ( dx+c \right ) \right ) ^{2} \right ) \sqrt{{\frac{a \left ( \cos \left ( dx+c \right ) +1 \right ) }{\cos \left ( dx+c \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)),x)

[Out]

1/16/d*a*(7*A*sin(d*x+c)*cos(d*x+c)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(3/2)*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(c
os(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))*2^(1/2)+12*B*sin(d*x+c)*cos(d*x+c)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(
3/2)*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))*2^(1/2)+7*A*(-2*cos(d*x+c
)/(cos(d*x+c)+1))^(3/2)*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))*2^(1/2
)*sin(d*x+c)+12*B*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(3/2)*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2
)*sin(d*x+c)/cos(d*x+c))*2^(1/2)*sin(d*x+c)-8*A*cos(d*x+c)^4-20*A*cos(d*x+c)^3-16*B*cos(d*x+c)^3+28*A*cos(d*x+
c)^2+16*B*cos(d*x+c)^2)*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)/cos(d*x+c)/sin(d*x+c)

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [A]  time = 0.616904, size = 833, normalized size = 7. \begin{align*} \left [\frac{{\left ({\left (7 \, A + 12 \, B\right )} a \cos \left (d x + c\right ) +{\left (7 \, A + 12 \, B\right )} a\right )} \sqrt{-a} \log \left (\frac{2 \, a \cos \left (d x + c\right )^{2} - 2 \, \sqrt{-a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 2 \,{\left (2 \, A a \cos \left (d x + c\right )^{2} +{\left (7 \, A + 4 \, B\right )} a \cos \left (d x + c\right )\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{8 \,{\left (d \cos \left (d x + c\right ) + d\right )}}, -\frac{{\left ({\left (7 \, A + 12 \, B\right )} a \cos \left (d x + c\right ) +{\left (7 \, A + 12 \, B\right )} a\right )} \sqrt{a} \arctan \left (\frac{\sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt{a} \sin \left (d x + c\right )}\right ) -{\left (2 \, A a \cos \left (d x + c\right )^{2} +{\left (7 \, A + 4 \, B\right )} a \cos \left (d x + c\right )\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{4 \,{\left (d \cos \left (d x + c\right ) + d\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)),x, algorithm="fricas")

[Out]

[1/8*(((7*A + 12*B)*a*cos(d*x + c) + (7*A + 12*B)*a)*sqrt(-a)*log((2*a*cos(d*x + c)^2 - 2*sqrt(-a)*sqrt((a*cos
(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) + 2*(2*A*a*co
s(d*x + c)^2 + (7*A + 4*B)*a*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(d*cos(d*x +
c) + d), -1/4*(((7*A + 12*B)*a*cos(d*x + c) + (7*A + 12*B)*a)*sqrt(a)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x
 + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) - (2*A*a*cos(d*x + c)^2 + (7*A + 4*B)*a*cos(d*x + c))*sqrt((a*cos(
d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c) + d)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2*(a+a*sec(d*x+c))**(3/2)*(A+B*sec(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 7.10897, size = 863, normalized size = 7.25 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)),x, algorithm="giac")

[Out]

-1/8*((7*A*sqrt(-a)*a*sgn(cos(d*x + c)) + 12*B*sqrt(-a)*a*sgn(cos(d*x + c)))*log(abs((sqrt(-a)*tan(1/2*d*x + 1
/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - a*(2*sqrt(2) + 3))) - (7*A*sqrt(-a)*a*sgn(cos(d*x + c)) + 12*
B*sqrt(-a)*a*sgn(cos(d*x + c)))*log(abs((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^
2 + a*(2*sqrt(2) - 3))) + 4*sqrt(2)*(7*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^6
*A*sqrt(-a)*a^2*sgn(cos(d*x + c)) + 12*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^6
*B*sqrt(-a)*a^2*sgn(cos(d*x + c)) - 95*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^4
*A*sqrt(-a)*a^3*sgn(cos(d*x + c)) - 76*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^4
*B*sqrt(-a)*a^3*sgn(cos(d*x + c)) + 53*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2
*A*sqrt(-a)*a^4*sgn(cos(d*x + c)) + 36*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2
*B*sqrt(-a)*a^4*sgn(cos(d*x + c)) - 5*A*sqrt(-a)*a^5*sgn(cos(d*x + c)) - 4*B*sqrt(-a)*a^5*sgn(cos(d*x + c)))/(
(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^4 - 6*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - s
qrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2*a + a^2)^2)/d